List 8

More integrals, functions of two variables
The "arctangent" (or "inverse tangent") function has the following properties:

$$
\operatorname{arctg}(0)=0, \quad \operatorname{arctg}(1)=\frac{\pi}{4}, \quad(\operatorname{arctg}(x))^{\prime}=\frac{1}{x^{2}+1} .
$$

213. Give the following integrals (arctg will appear somewhere in each answer):
(a) $\int \frac{5}{x^{2}+1} \mathrm{~d} x$
(b) $\int \frac{5}{x^{2}+2} \mathrm{~d} x$
(c) $\int \frac{x^{2}+2}{x^{2}+3} \mathrm{~d} x$
(d) $\int \frac{x}{x^{4}+1} \mathrm{~d} x$
214. Integrate by parts:
(a) $\int x^{2} e^{x} \mathrm{~d} x$
(d) $\int \frac{\ln x}{x^{2}} \mathrm{~d} x$
(g) $\int \operatorname{arctg} x \mathrm{~d} x$
(b) $\int x \ln x \mathrm{~d} x$
(e) $\int(\ln x)^{2} \mathrm{~d} x$
(h) $\int_{0}^{1} x^{2} \operatorname{arctg} x \mathrm{~d} x$
(c) $\int \sqrt{x} \ln x \mathrm{~d} x$
(f) $\int \ln x \mathrm{~d} x$
(i) $\int_{1}^{e}\left(\frac{\ln x}{x}\right)^{2} \mathrm{~d} x$
215. Integrate using substitution:
(a) $\int x \sqrt{x^{2}+1} \mathrm{~d} x$
(d) $\int x e^{x^{2}} \mathrm{~d} x$
(g) $\int_{0}^{4} \frac{\mathrm{~d} x}{1+\sqrt{x}}$
(b) $\int(5-3 x)^{10} \mathrm{~d} x$
(e) $\int \frac{\ln ^{2} x}{x} \mathrm{~d} x$
(h) $\int_{0}^{2} x^{2} \cdot 2^{x^{3}}$
(c) $\int \sqrt{a+b x} \mathrm{~d} x$
(f) $\int \frac{\ln x}{x} \mathrm{~d} x$
216. Calculate the following indefinite integrals. You will have to decide what method (e.g., algebra simplification, parts, substitution) to use.
(a) $\int\left(3 x^{3}+2 \sqrt{x}-1\right) \mathrm{d} x$
(d) $\int \frac{x^{2}+2}{x^{2}+1} \mathrm{~d} x$
(g) $\int\left(9 x^{2}-x+1\right)^{2} \mathrm{~d} x$
(b) $\int x(x-1)(x-2) \mathrm{d} x$
(e) $\int \frac{x^{3}+8}{x^{2}} \mathrm{~d} x$
(h) $\int \frac{e^{x}-2^{x}}{5^{x}} \mathrm{~d} x$
(c) $\int \frac{3 \sqrt[3]{x}-3}{x} \mathrm{~d} x$
(f) $\int \frac{x^{2}}{x^{3}+8} \mathrm{~d} x$
217. Compute the following definite integrals:
(a) $\int_{0}^{2} \frac{3 x-1}{3 x+1} \mathrm{~d} x$
(b) $\int_{2}^{3} \frac{\mathrm{~d} x}{x^{2}+2 x+1}$
(c) $\int_{0}^{2} \frac{x}{e^{x}} \mathrm{~d} x$
(d) $\int_{-1}^{2}|x| \mathrm{d} x$
218. Examine the graphs of sections of the function $z=z(x, y)$ and based on that draw the graphs of the function:
(a) $3 x+2 y+z-6=0$
(b) $z^{2}=x^{2}+y^{2}$
(c) $z=x^{2}+y^{2}$

The point $(x, y)=(a, b)$ is a stationary point of $f(x, y)$ if both $f_{x}^{\prime}(a, b)=0$ and $f_{y}^{\prime}(a, b)=0$, where f_{x}^{\prime} and f_{y}^{\prime} are partial derivatives of f. A critical point is where either $f_{x}^{\prime}=f_{y}^{\prime}=0$ or at least one partial d. does not exist.
219. Calculate the first-order and second-order partial derivatives of the functions:
(a) $f(x, y)=x y$
(b) $z(x, y)=x e^{x y}$
(c) $z=x^{2} y+\ln (x y)$

The function $D(x, y)=f_{x x}^{\prime \prime} f_{y y}^{\prime \prime}-f_{x y}^{\prime \prime} f_{y x}^{\prime \prime}$ can be used to classify critical points. If $D>0$ and $f_{x x}^{\prime \prime}>0$ at a critical point, then that point is a local minimum. If $D>0$ and $f_{x x}^{\prime \prime}<0$ at a critical point, then that point is a local maximum. If $D<0$ at a critical point then it is not a local extreme (it is a "saddle"). If $D=0$ then the point might be a local extreme but might not be.
220. Find the local extrema of $f(x, y)=x^{2}+x y+y^{2}-2 x-y$.
221. Find the local extrema of the function $z=x^{3} y^{2}(6-x-y)$.

To find extreme values of $f(x, y)$ with a condition/restriction, re-write the task as a single-variable extreme value task.
For extreme values of $f(x, y)$ in a polygonal domain, check the value of the function at all critical points inside the domain, at all vertices (corners) of the domain, and use one-variable tasks along each side.
222. Find the maximum of the function (Cobb-Douglas production function)

$$
u(x, y)=\sqrt{x y}=x^{1 / 2} y^{1 / 2}
$$

describing the production value in the case that the parameters x and y satisfy the condition $7 x+3 y=84$.
223. Determine the smallest and the largest value of $z=z(x, y)$ in the given region:
(a) $z=x^{2}+2 x y-4 x+8 y$ in the region $D: 0 \leq x \leq 1,0 \leq y \leq 2$,
(b) $z=x^{3}+y^{2}-3 x-2 y-1$ in the region $D: x \geq 0, y \geq 0, x+y \leq 1$.
(c) $z=x^{2}-x y+y^{2}$ in the region $D:|x|+|y| \leq 1$.
224. Find the distance of the point $A=(0,3,0)$ from the surface $y=z x$.
225. Write a positive number a as the sum of three positive numbers in such a way that the product of these three ingredients attains the maximal value.
226. A cuboidal warehouse is supposed to have the volume $V=64 \mathrm{~m}^{3}$. One square meter of ceiling costs 20 z , one square meter of the floor costs $40 \mathrm{zł}$ and one square meter of the wall costs $30 \mathrm{zł}$. Determine the length a, width b and height c of the warehouse, minimizing the total cost.
227. The total annual income in the sale of two goods is expressed by the function

$$
D(x, y)=400 x-4 x^{2}+1960 y-8 y^{2}
$$

where x and y denote amounts of goods of respectively first and second type, sold per year. The production cost of x items of the first type and y items of the second type is: $K(x, y)=100+2 x^{2}+4 y^{2}+2 x y$. Determine the number of items of goods of the first and second type maximizing the annual profit.
228. Suppose we have the budget of 4000000 PLN at our disposal. What should be the amounts spent on resources x and y, so as to minimize the production cost described by the function $f(x, y)=x^{2}+y^{2}-x y+3$?
229. Distribute the daily power production of 100 MWh between two power generating plants A and B in such a way so as to minimize the daily cost of fuel, given by the function

$$
f(x, y)=2(x-1)^{2}+(y-3)^{2}
$$

where x is the use of the fuel at plant A and y is the use at plant B. Moreover, 1 tone of fuel supplies 5 MWh of energy at plant A and 1 tone of fuel supplies 3 MWh of energy at plant B. Give the daily cost of fuel use at both plants.

