Math for Management, Winter 2023 List 8 More integrals, functions of two variables

The "arctangent" (or "inverse tangent") function has the following properties: $\operatorname{arctg}(0) = 0, \quad \operatorname{arctg}(1) = \frac{\pi}{4}, \quad \left(\operatorname{arctg}(x)\right)' = \frac{1}{x^2 + 1}.$

213. Give the following integrals (arctg will appear somewhere in each answer):

(a)
$$\int \frac{5}{x^2+1} dx$$
 (b) $\int \frac{5}{x^2+2} dx$ (c) $\int \frac{x^2+2}{x^2+3} dx$ (d) $\int \frac{x}{x^4+1} dx$

214. Integrate by parts:

(a)
$$\int x^2 e^x dx$$
 (d) $\int \frac{\ln x}{x^2} dx$ (g) $\int \arctan x dx$
(b) $\int x \ln x dx$ (e) $\int (\ln x)^2 dx$ (h) $\int_0^1 x^2 \arctan x dx$
(c) $\int \sqrt{x} \ln x dx$ (f) $\int \ln x dx$ (i) $\int_1^e \left(\frac{\ln x}{x}\right)^2 dx$

215. Integrate using substitution:

(a)
$$\int x\sqrt{x^2+1} \, dx$$

(b)
$$\int (5-3x)^{10} \, dx$$

(c)
$$\int \sqrt{a+bx} \, dx$$

(d)
$$\int xe^{x^2} \, dx$$

(e)
$$\int \frac{\ln^2 x}{x} \, dx$$

(f)
$$\int \frac{\ln x}{x} \, dx$$

(g)
$$\int_0^4 \frac{dx}{1+\sqrt{x}}$$

(h)
$$\int_0^2 x^2 \cdot 2^{x^3}$$

216. Calculate the following indefinite integrals. You will have to decide what method (e.g., algebra simplification, parts, substitution) to use.

(a)
$$\int (3x^3 + 2\sqrt{x} - 1) \, dx$$
 (d) $\int \frac{x^2 + 2}{x^2 + 1} \, dx$ (g) $\int (9x^2 - x + 1)^2 \, dx$
(b) $\int x(x-1)(x-2) \, dx$ (e) $\int \frac{x^3 + 8}{x^2} \, dx$ (h) $\int \frac{e^x - 2^x}{5^x} \, dx$
(c) $\int \frac{3\sqrt[3]{x} - 3}{x} \, dx$ (f) $\int \frac{x^2}{x^3 + 8} \, dx$

217. Compute the following definite integrals:

(a)
$$\int_0^2 \frac{3x-1}{3x+1} dx$$
 (b) $\int_2^3 \frac{dx}{x^2+2x+1}$ (c) $\int_0^2 \frac{x}{e^x} dx$ (d) $\int_{-1}^2 |x| dx$

218. Examine the graphs of sections of the function z = z(x, y) and based on that draw the graphs of the function:

(a)
$$3x + 2y + z - 6 = 0$$
 (b) $z^2 = x^2 + y^2$ (c) $z = x^2 + y^2$

The point (x, y) = (a, b) is a **stationary point** of f(x, y) if both $f'_x(a, b) = 0$ and $f'_y(a, b) = 0$, where f'_x and f'_y are partial derivatives of f. A **critical point** is where either $f'_x = f'_y = 0$ or at least one partial d. does not exist.

219. Calculate the first-order and second-order partial derivatives of the functions:

(a) f(x, y) = xy (b) $z(x, y) = xe^{xy}$ (c) $z = x^2y + \ln(xy)$ The function $D(x, y) = f''_{xx}f''_{yy} - f''_{xy}f''_{yx}$ can be used to classify critical points. If D > 0 and $f''_{xx} > 0$ at a critical point, then that point is a local minimum. If D > 0 and $f''_{xx} < 0$ at a critical point, then that point is a local maximum. If D < 0 at a critical point then it is *not* a local extreme (it is a "saddle"). If D = 0 then the point might be a local extreme but might not be.

220. Find the local extrema of $f(x, y) = x^2 + xy + y^2 - 2x - y$.

221. Find the local extrema of the function $z = x^3 y^2 (6 - x - y)$.

To find extreme values of f(x, y) with a condition/restriction, re-write the task as a single-variable extreme value task.

For extreme values of f(x, y) in a polygonal domain, check the value of the function at all critical points inside the domain, at all vertices (corners) of the domain, and use one-variable tasks along each side.

222. Find the maximum of the function (Cobb-Douglas production function) $u(x,y) = \sqrt{xy} = x^{1/2}y^{1/2}$

describing the production value in the case that the parameters x and y satisfy the condition 7x + 3y = 84.

- 223. Determine the smallest and the largest value of z = z(x, y) in the given region:
 - (a) $z = x^2 + 2xy 4x + 8y$ in the region $D: 0 \le x \le 1, 0 \le y \le 2$,
 - (b) $z = x^3 + y^2 3x 2y 1$ in the region $D: x \ge 0, y \ge 0, x + y \le 1$.
 - (c) $z = x^2 xy + y^2$ in the region $D: |x| + |y| \le 1$.
- 224. Find the distance of the point A = (0, 3, 0) from the surface y = zx.
- 225. Write a positive number a as the sum of three positive numbers in such a way that the product of these three ingredients attains the maximal value.
- 226. A cuboidal warehouse is supposed to have the volume $V = 64 m^3$. One square meter of ceiling costs 20 zł, one square meter of the floor costs 40 zł and one square meter of the wall costs 30 zł. Determine the length *a*, width *b* and height *c* of the warehouse, minimizing the total cost.
- 227. The total annual income in the sale of two goods is expressed by the function $D(x, y) = 400x 4x^2 + 1960y 8y^2,$

where x and y denote amounts of goods of respectively first and second type, sold per year. The production cost of x items of the first type and y items of the second type is: $K(x, y) = 100 + 2x^2 + 4y^2 + 2xy$. Determine the number of items of goods of the first and second type maximizing the annual profit.

228. Suppose we have the budget of 4 000 000 PLN at our disposal. What should be the amounts spent on resources x and y, so as to minimize the production cost described by the function $f(x, y) = x^2 + y^2 - xy + 3$?

229. Distribute the daily power production of 100 MWh between two power generating plants A and B in such a way so as to minimize the daily cost of fuel, given by the function

$$f(x,y) = 2(x-1)^2 + (y-3)^2,$$

where x is the use of the fuel at plant A and y is the use at plant B. Moreover, 1 tone of fuel supplies 5 MWh of energy at plant A and 1 tone of fuel supplies 3 MWh of energy at plant B. Give the daily cost of fuel use at both plants.